Reactive oxygen species produced by the NADPH oxidase 2 complex in monocytes protect mice from bacterial infections.

نویسندگان

  • Angela Pizzolla
  • Malin Hultqvist
  • Bo Nilson
  • Melissa J Grimm
  • Tove Eneljung
  • Ing-Marie Jonsson
  • Margareta Verdrengh
  • Tiina Kelkka
  • Inger Gjertsson
  • Brahm H Segal
  • Rikard Holmdahl
چکیده

Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent life-threatening bacterial and fungal infections. CGD results from defective production of reactive oxygen species by phagocytes caused by mutations in genes encoding the NADPH oxidase 2 (NOX2) complex subunits. Mice with a spontaneous mutation in Ncf1, which encodes the NCF1 (p47(phox)) subunit of NOX2, have defective phagocyte NOX2 activity. These mice occasionally develop local spontaneous infections by Staphylococcus xylosus or by the common CGD pathogen Staphylococcus aureus. Ncf1 mutant mice were more susceptible to systemic challenge with these bacteria than were wild-type mice. Transgenic Ncf1 mutant mice harboring the wild-type Ncf1 gene under the human CD68 promoter (MN(+) mice) gained the expression of NCF1 and functional NOX2 activity specifically in monocytes/macrophages, although minimal NOX2 activity was also detected in some CD11b(+)Ly6G(+) cells defined as neutrophils. MN(+) mice did not develop spontaneous infection and were more resistant to administered staphylococcal infections compared with MN(-) mice. Most strikingly, MN(+) mice survived after being administered Burkholderia cepacia, an opportunistic pathogen in CGD patients, whereas MN(-) mice died. Thus, monocyte/macrophage expression of functional NCF1 protected against spontaneous and administered bacterial infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia.

RATIONALE The role of NADPH oxidase activation in pneumonia is complex because reactive oxygen species contribute to both microbial killing and regulation of the acute pulmonary infiltrate. The relative importance of each role remains poorly defined in community-acquired pneumonia. OBJECTIVES We evaluated the contribution of NADPH oxidase-derived reactive oxygen species to the pathogenesis of...

متن کامل

Effect of Antibiotics and/or Chemotherapy on Generation of Reactive Oxygen Intermediate by Neutrophils

Dear Editor, The O2-generating enzyme NADPH oxidase, plays a crucial role in host defense against microbial infection through the production of reactive oxygen species (ROS).1The multisubunit NADPH oxidase complex can be detected in vitro by the nitroblue tetrazolium test (NBT).2The NBT test is used for the diagnosis of chronic granulomatous disease.3 However, several factors, such as some cyto...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.

Phagocytes such as neutrophils and monocytes play an essential role in host defenses against microbial pathogens. Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, the hydroxyl radical, and hypochlorous acid, together with microbicidal peptides and proteases, constitute their antimicrobial arsenal. The enzyme responsible for superoxide anion production and, consequentl...

متن کامل

Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection.

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. In this study, we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, even though M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 188 10  شماره 

صفحات  -

تاریخ انتشار 2012